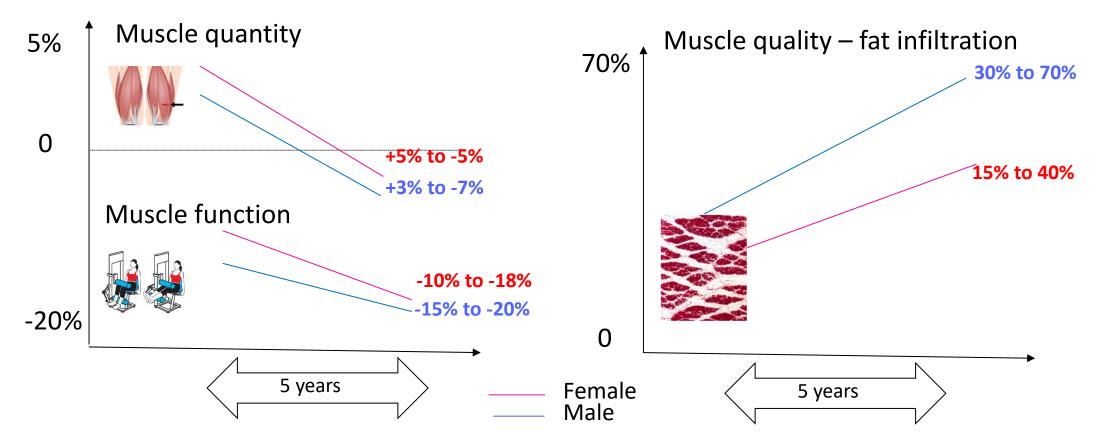
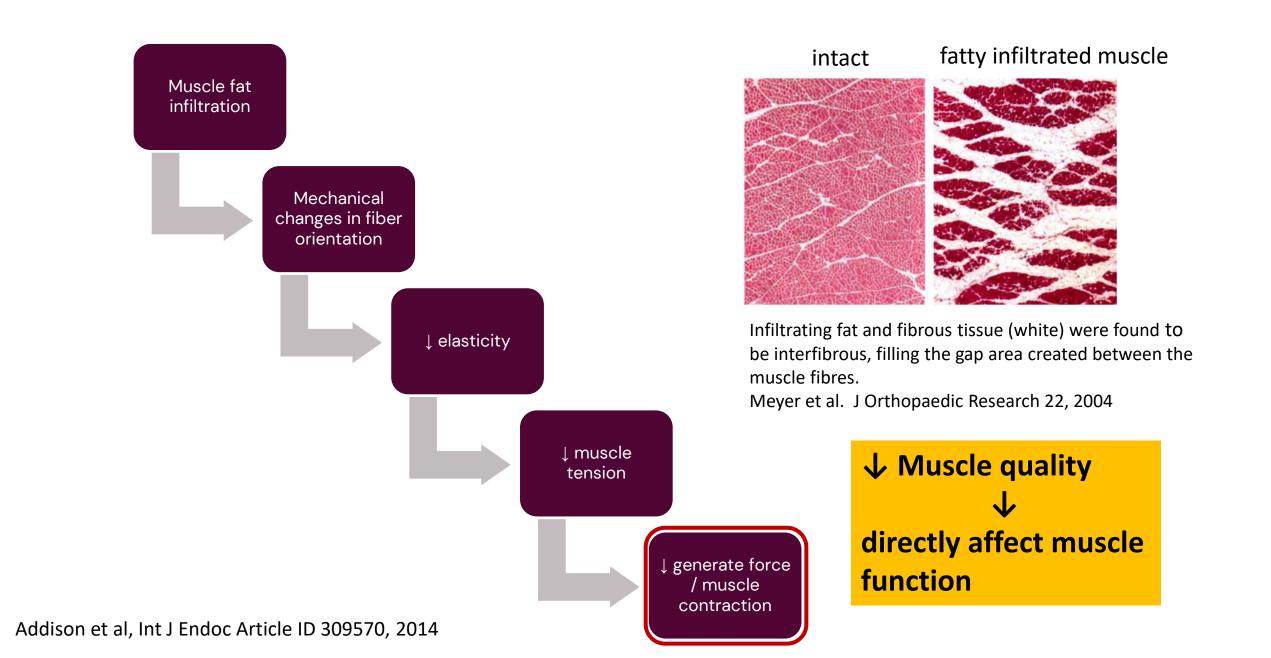


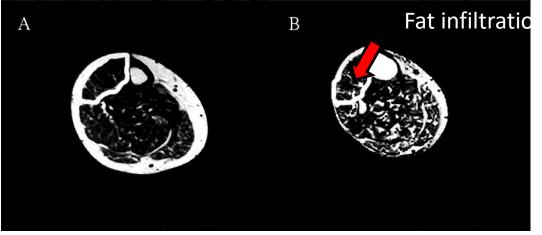
# Ultrasound to evaluate muscle quality and quantity in CKD


Alice Sabatino, RD, PhD Research Specialist Baxter Novum – Division of Renal Medicine CLINTEC Department Karolinska Institutet alice.sabatino@ki.se

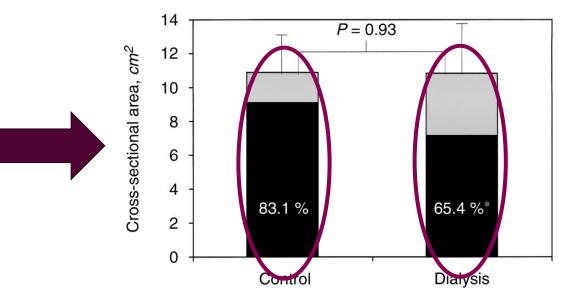
### Outline


- Muscle abnormalities
- Evaluating muscle quantity and quality
- Ultrasound for the evaluation of muscle quantity
  - → Reliability/Validity
  - → Utility
- Ultrasound for the evaluation of muscle quality
  - $\rightarrow$  Validity
  - $\rightarrow$  Utility
- Practical considerations

# Muscle abnormalities related to outcome


Naturally occurring with aging, but also secondary to chronic diseases




Delmonico et al, Am J Clin Nutr 2009;90:1579–85



## Lower contractile area in patients on HD in comparison to healthy controls



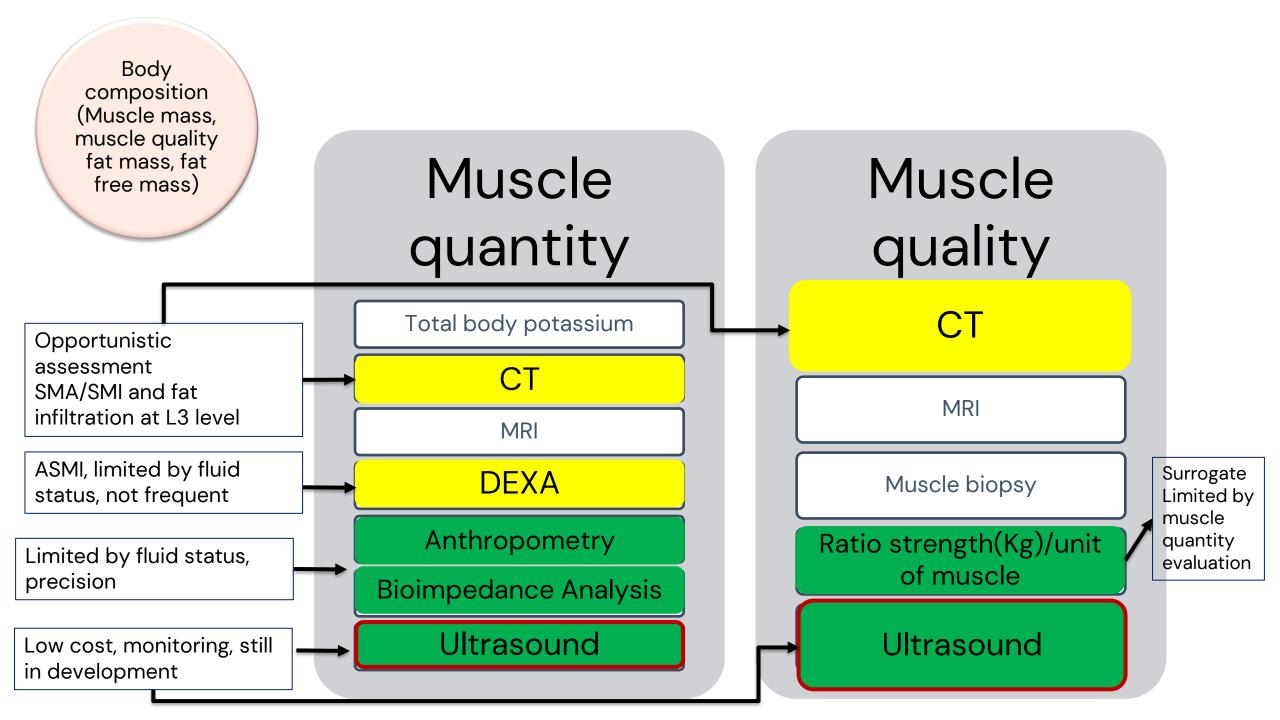
(A) 72-year-old female control subject.(B) 70-year-old female hemodialysis subject.



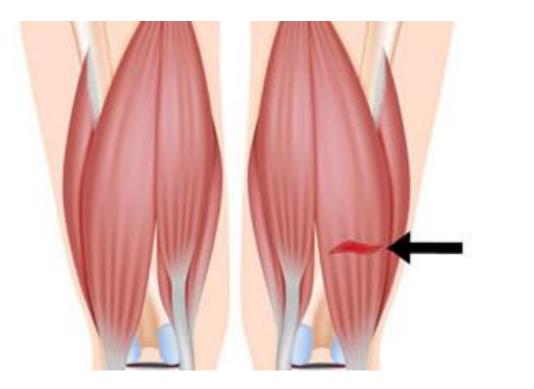
- $\downarrow$  Contractile muscle area
  - $\uparrow$  Non-contractile muscle area

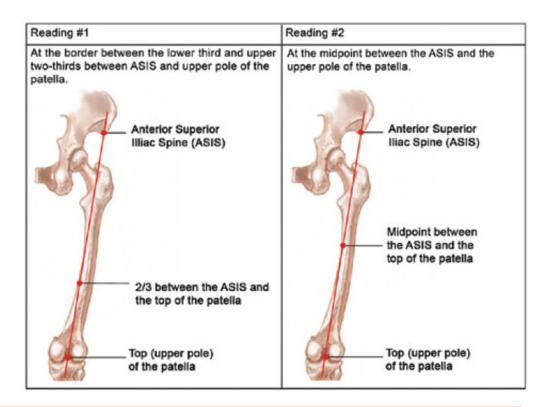
5

#### Sarcopenia: revised European consensus on definition and diagnosis Age and Ageing 2018; 0: 1–16 doi: 10.1093/ageing/afy169


Table 1. 2018 operational definition of sarcopenia

Probable sarcopenia is identified by Criterion 1. Diagnosis is confirmed by additional documentation of Criterion 2. If Criteria 1, 2 and 3 are all met, sarcopenia is considered severe.

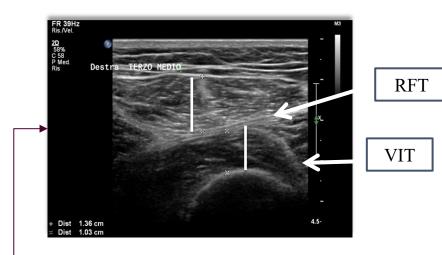

Low muscle strength


(2) Low muscle quantity or quality

(3) Low physical performance



## Muscle US: Which muscle and which point?

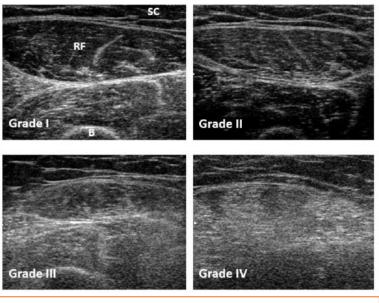






- Lower extremities are affected earlier by age-related loss compared to the muscles of the upper extremities
- Reduction of the anterior thigh muscles occurs at a higher rate compared to the other leg muscles

Janssen I et al. J Appl Physiol (1985) 2000; 89: 81–88 Minetto MA et al. PM R 2016; 8: 453–462


## Ultrasound as a valid tool to assess body composition in patients with kidney disease



#### Muscle quantity



#### Muscle quality



↑ echogenicity = ↑ fat infiltration

Sabatino A et al Clin Nutr 2017; 36: 1710-1715 Wilkinson et al. Nephrol Dial Transplant (2019) 34: 1344–135

## US to assess muscle quantity

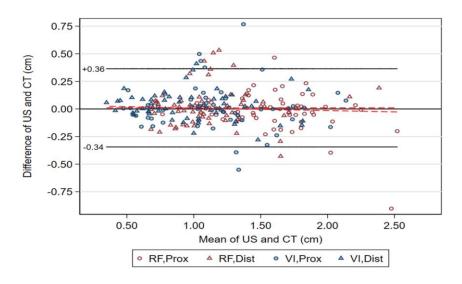
## The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review

Reliability studies (n = 13), validity studies (n = 6)

Intra-rater reliability: The highest intraclass correlation coefficient (ICC) scores were: vastus lateralis (ICC = 0.852 to 0.999), the rectus femoris (ICC = 0.72 to 0.997), the upper arm anterior (ICC = 0.81 to 0.99), and the trunk (0.73 to 1.00).

Inter-rater reliability (4 studies): Reliability estimates ranged from 0.88 to 0.998

Table 3 Overview of the included validity studies


| Stu dy                                        | Demographics <sup>a</sup>                                                                                                                         | Reference<br>method                | Scanning<br>plane | Muscle            | Muscle<br>dimension | Validity<br>estimates <sup>b</sup>                   |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|-------------------|---------------------|------------------------------------------------------|
| Berger e <i>t al</i> . , 2015 <sup>36</sup>   | Community-dwelling<br>older adults<br>n = 51 (25:26)<br>age (females) = 72.5 (5.8)<br>age (males) = 74.5 (6.5)                                    | DXA                                | Transverse        | Rectus femoris    | Thickness           | Right: <i>r</i> = 0.9687<br>Left: <i>r</i> = 0.9667  |
| Hammond <i>et al.</i> ,<br>2014 <sup>23</sup> | Ambulatory COPD<br>patients<br>n = 15 (NR:NR)<br>age = NR (NR)                                                                                    | Ultrasound<br>linear<br>transducer | Transverse        | Rectus femoris    | CSA                 | ICC = 0.982 (NR)                                     |
| MacGillivray et al.,<br>2008 <sup>24</sup>    | Community-dwelling<br>older adults<br>n = 11 (NR:NR)<br>median<br>age = 79                                                                        | MRI                                | Sagittal          | Rectus femoris    | Volume              | ICC = 0.997 (NR)                                     |
| Reeves et al., 2004 <sup>29</sup>             | Healthy adults<br>n = 6 (3:3)<br>age = 76.8 (3.2)                                                                                                 | MRI                                | Transverse        | Vastus lateralis  | CSA                 | ICCs between<br>0.998 and 0.999<br>for scans 6 to 10 |
| Sipila and Suominen,<br>1993 <sup>37</sup>    | Older adults $n = 36$<br>(0:36)<br>Trained athletes<br>n = 21 (0:21)<br>age = 73.7 (5.6)<br>Healthy controls<br>n = 15 (0:15)<br>age = 73.6 (2.9) | СТ                                 | Transverse        | Quadriceps        | Thickness,<br>CSA   | Thickness<br>r = 0.761<br>CSA<br>r = 0.911           |
| Thomaes <i>et al.,</i><br>2012 <sup>33</sup>  | Older coronary artery<br>disease patients<br>without cardiovascular<br>incident in the last<br>year<br>n = 20 (NR)<br>age = 68.3 (7.3)            | ст                                 | Transverse        | Rectus<br>femoris | Thick ness          | ICC = 0.92<br>(0.81-0.97)                            |

All studies found that ultrasound is valid for the assessment of muscles, with ICC scores ranging from 0.92 to 0.999, and r = 0.761 to r = 0.911.

Reliability of bedside ultrasound for measurement of quadriceps muscle thickness in critically ill patients with acute kidney injury

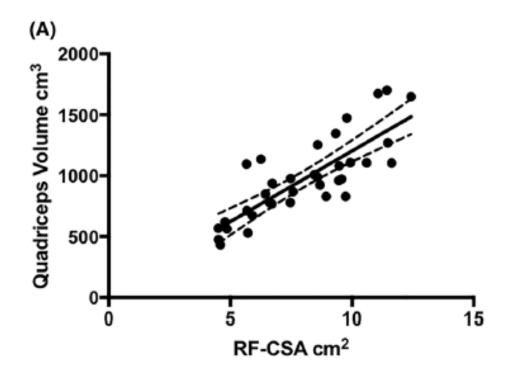
Alice Sabatino <sup>a</sup>, Giuseppe Regolisti <sup>a</sup>, Laura Bozzoli <sup>c</sup>, Filippo Fani <sup>a</sup>, Riccardo Antoniotti <sup>a</sup>, Umberto Maggiore <sup>b</sup>, Enrico Fiaccadori <sup>a, \*</sup>

Intraobserver reliability: ICC 0.97 – 1.00 Interobserver reliability: ICC 0.88 – 0.93 Test-retest reliability (before and after RRT): ICC = 0.97



Journal of Nephrology https://doi.org/10.1007/s40620-019-00659-2

**ORIGINAL ARTICLE** 


#### Validation by CT scan of quadriceps muscle thickness measurement by ultrasound in acute kidney injury

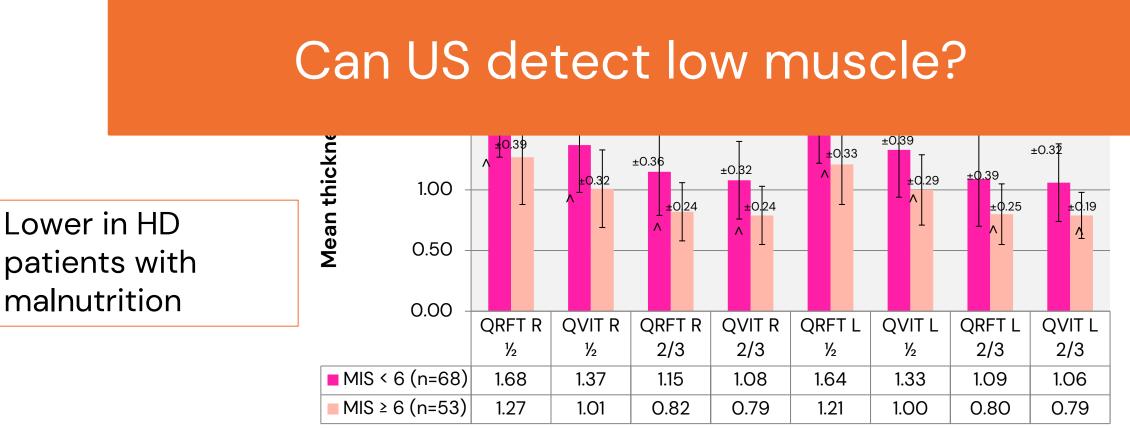
Alice Sabatino<sup>1</sup> · Giuseppe Regolisti<sup>1,2</sup> · Francesca di Mario<sup>1,2</sup> · Andrea Ciuni<sup>3</sup> · Anselmo Palumbo<sup>3</sup> · Francesco Peyronel<sup>1,2</sup> · Umberto Maggiore<sup>1,2</sup> · Enrico Fiaccadori<sup>1,2</sup>

- A little less precise than CT, but consistent over time
- The main limitation of US is its lack of standardized protocols and examiner-dependent factors, which can lead to evaluation errors and thus interfere with the reproducibility of results

#### Clinical Nutrition 36 (2017) 1710-1715

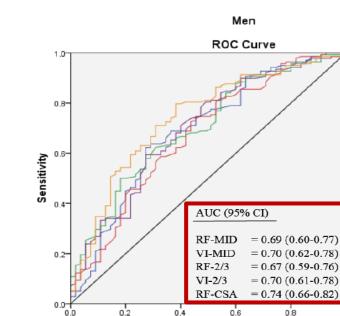
## Cross-sectional area quantified by US is highly associated with muscle volume by MRI




Baseline association between RF-CSA (US) and RF volume (MRI): r<sup>2</sup> = 0.815, CI 0.661 to 0.903; P < 0.001

Journal of Cachexia, Sarcopenia and Muscle 2019; 10: 748–755

Original article


Noninvasive evaluation of muscle mass by ultrasonography of quadriceps femoris muscle in End-Stage Renal Disease patients on hemodialysis

Alice Sabatino <sup>a</sup>, Giuseppe Regolisti <sup>a</sup>, Marco Delsante <sup>a</sup>, Tommaso Di Motta <sup>b</sup>, Chiara Cantarelli <sup>b</sup>, Sarah Pioli <sup>c</sup>, Giulia Grassi <sup>d</sup>, Valentina Batini <sup>e</sup>, Mariacristina Gregorini <sup>f</sup>, Enrico Fiaccadori <sup>a, b, \*</sup>



Clin Nutr. 2019; 38:1232-1239

\*Adjusted by age and sex



1 - Specificity

Women ROC Curve

AUC (95 % CI)

= 0.76 (0.67 - 0.86)

= 0.73 (0.62 - 0.83)

= 0.74 (0.64 - 0.84)

= 0.71 (0.61 - 0.82)

RF-CSA = 0.82 (0.73-0.91)

RF-MID

VI-MID

RF-2/3

VI-2/3

1 - Specificity

Source of the

Curve RF.mid VI.mid RF.2.3

Source of t Curve RF.mid VI.mid RF.2.3

CSA Reference

### US was also used to identify patients on HD with PEW

Table 6. Association of the RF<sub>CSA</sub> gender-specific values with PEW risk.

| PEW Risk                                                                 | Odds Ratio        | 95% CI     | <i>p</i> -Value |
|--------------------------------------------------------------------------|-------------------|------------|-----------------|
| <i>Unadjusted</i><br>Low RF <sub>CSA</sub><br>High RF <sub>CSA</sub>     | 8.00<br>Reference | 4.62-13.86 | <0.001          |
| Adjusted <sup>a</sup><br>Low RF <sub>CSA</sub><br>High RF <sub>CSA</sub> | 8.63<br>Reference | 4.80-15.50 | <0.001          |

Abbreviations: CI, confidence interval; CSA, cross-sectional area; PEW; protein energy wasting; RF, rectus femoris. Note: RF<sub>CSA</sub> gender-specific values for the PEW risk was < 6.00 cm<sup>2</sup> for men and < 4.47 cm<sup>2</sup> for women. <sup>a</sup> Data was adjusted for age, ethnicity, dialysis vintage, and comorbidities.

В

0.8

0.2

0.0

0.0

0.2

Sensitivity

Α

Sahathevan S et al Nutrients 2020; 12: 3597

### Cut-off values?

Check for updates

#### **Review Article**

Ultrasound cut-off values for muscle thickness, cross-sectional area, and echo intensity in Caucasian adults: a narrative review

Jona Van den Broeck<sup>1</sup><sup>^</sup>, Savanah Héréus<sup>1</sup><sup>^</sup>, Erik Cattrysse<sup>1</sup><sup>^</sup>, Hubert Raeymaekers<sup>2</sup><sup>^</sup>, Aldo Scafoglieri<sup>1</sup><sup>^</sup>

| Echo<br>intenstity | Arts et al.<br>[2010] (22) | Supine                        |                                               | Transverse                        | Region on interest<br>from an area as large |         | Men   | Women |
|--------------------|----------------------------|-------------------------------|-----------------------------------------------|-----------------------------------|---------------------------------------------|---------|-------|-------|
| intensity          | [2010] (22)                |                               | as possible without                           | 20 y                              | 31                                          | 36      |       |       |
|                    |                            | surrounding fascia<br>or bone | 30 y                                          | 32                                | 40                                          |         |       |       |
|                    |                            |                               |                                               |                                   |                                             | 40 y    | 35    | 41    |
|                    |                            |                               |                                               | 50 y                              | 37                                          | 42      |       |       |
|                    |                            |                               |                                               |                                   |                                             | 60 y    | 40    | 45    |
|                    |                            |                               | 70 y                                          | 45                                | 46                                          |         |       |       |
|                    |                            |                               | 80 y                                          | 50                                | 47                                          |         |       |       |
|                    |                            |                               |                                               | 90 y                              | 55                                          | 50      |       |       |
|                    |                            | Halfway between the           | Transverse and                                | Not described                     | Based on age                                |         |       |       |
|                    | [2003] (26)                | legs extended                 | greater trochanter<br>femoris and the lateral | longitudinal;<br>perpendicular to |                                             | 20–30 y | 64.23 |       |
|                    | Healthy                    |                               | condyle of the femur                          | the bone                          |                                             | 30–50 y | 8     | 9.02  |
|                    | The                        | un al a                       |                                               |                                   |                                             | 50–70 y | 11    | 2.55  |
|                    | Netherla                   | inas                          |                                               |                                   |                                             | 70+ y   | 13    | 9.83  |
| Vastus interm      | nedius muscle              |                               |                                               |                                   |                                             |         |       |       |
| Muscle             | Barotsis et al.            |                               |                                               | Transverse                        |                                             | 1.01    |       |       |
| - F                | [2020] (23)                | Healthy                       |                                               | aponeurosis and<br>bone-muscle    |                                             | 1.00    |       |       |
|                    | -                          |                               | . –                                           | interface                         |                                             |         |       |       |
|                    | Greece                     |                               |                                               |                                   |                                             |         |       |       |

|             | Author                        | Participan<br>t position      | Measurement<br>site                                     | Scan plan<br>palcement<br>transducer | Definition<br>variable         | Cut-off                  |        | Healthy<br>Greece |
|-------------|-------------------------------|-------------------------------|---------------------------------------------------------|--------------------------------------|--------------------------------|--------------------------|--------|-------------------|
| Rectus femo | ris muscle                    |                               |                                                         |                                      |                                |                          |        |                   |
| Muscle      |                               |                               | Midpoint between the                                    | 1 1                                  |                                | Between superficial 1.54 |        |                   |
| thickness   |                               |                               | ASIS and the superior<br>border of the patella          | Longitudinal aponeurosis of the      | and deep<br>aponeurosis of the | 1.59                     |        |                   |
|             | Minetto et a                  | Healthy                       |                                                         |                                      | muscle                         | Mer                      | n      | Women             |
|             | [/                            | Italy                         |                                                         |                                      |                                | 1.9                      | 9      | 1.59              |
|             | Rustani et al.<br>[2019] (30) | Supine with<br>extended knees | Halfway between the<br>greater trochanter               | Perpendicular<br>to the thigh        | Not described                  | Mei                      | n      | Women             |
|             | Hospital<br>Italy             |                               | femoris and the lateral condyle of the femur            | to the uligh                         |                                | 0.9                      | )      | 0.7               |
| CSA         | Fernández-                    | Cancer border of the patella  |                                                         | Transverse                           | Not described                  |                          | 2.7    |                   |
|             |                               | Sarcoidosis<br>Turkey         | ASIS. Midpoint<br>een the ASIS and<br>uperior border of | Perpendicular<br>to the skin         |                                |                          | 0.0565 |                   |

Need for cut-off values that are sex and age-specific.

Cut-offs to evaluate outcome (derived from the population under study) vs the effect of age (healthy young) or the disease (healthy old)

## Other cut-offs specific to nephrology

Quadriceps muscle thickness assessed by ultrasound is independently associated with mortality in hemodialysis patients

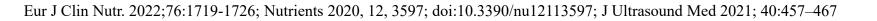
Alice Sabatino <sup>1,2™</sup>, Jeroen P. Kooman<sup>3</sup>, Tommaso Di Motta<sup>1,2</sup>, Chiara Cantarelli<sup>1,2</sup>, Mariacristina Gregorini<sup>4</sup>, Stefano Bianchi<sup>5</sup>, Giuseppe Regolisti<sup>6</sup> and Enrico Fiaccadori<sup>12</sup>

#### Article

Association of Ultrasound-Derived Metrics of the Quadriceps Muscle with Protein Energy Wasting in Hemodialysis Patients: A Multicenter Cross-Sectional Study

181 pts from Italy Used the median of the distribution

> 351 pts from Malaysia Derived from ROC curves with presence of PEW as the reference


Utility of Ultrasound as a Valid and Accurate Diagnostic Tool for Sarcopenia



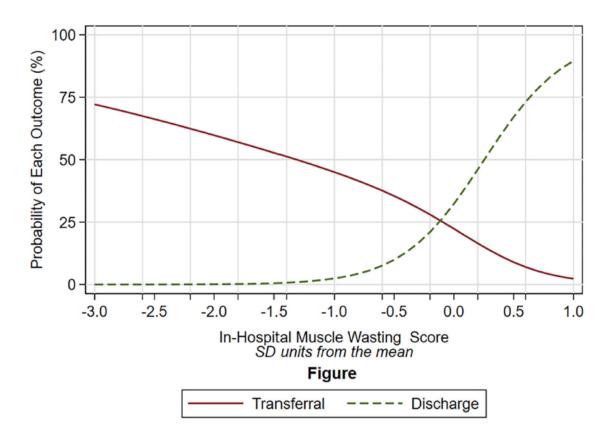
Sex-Specific Cutoff Values in Chronic Kidney Disease

Thomas J. Wilkinson, PhD <sup>1</sup>, Eleanor F. Gore, MSc, Noemi Vadaszy, MSc, Daniel G. D. Nixon, MSc, Emma L. Watson, PhD, Alice C. Smith, PhD

113 pts from UK. Derived from ROC curves using low muscle as assessed by ASM, ASMI and ASM/BMI as reference methods (cut-offs from EWGOSP and FNIHS)



## US as a monitoring tool


#### Ultrasound for Non-invasive Assessment and Monitoring of Quadriceps Muscle Thickness in Critically III Patients With Acute Kidney Injury

Alice Sabatino<sup>1,2\*</sup>, Umberto Maggiore<sup>1,2</sup>, Giuseppe Regolisti<sup>1,2</sup>, Giovanni Maria Rossi<sup>1,2</sup>, Francesca Di Mario<sup>1,2</sup>, Micaela Gentile<sup>1,2</sup>, Maria Teresa Farina<sup>1,2</sup> and Enrico Fiaccadori<sup>1,2</sup>

<sup>1</sup> UO Nefrologia, Azienda Ospedaliera- Universitaria Parma, Parma, Italy, <sup>2</sup> Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy

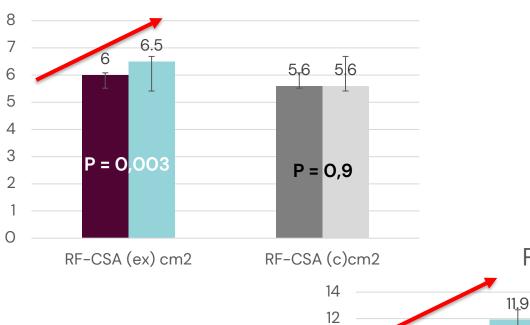
As a monitoring tool:

- Sensible to short-term changes
- Changes associated to outcome

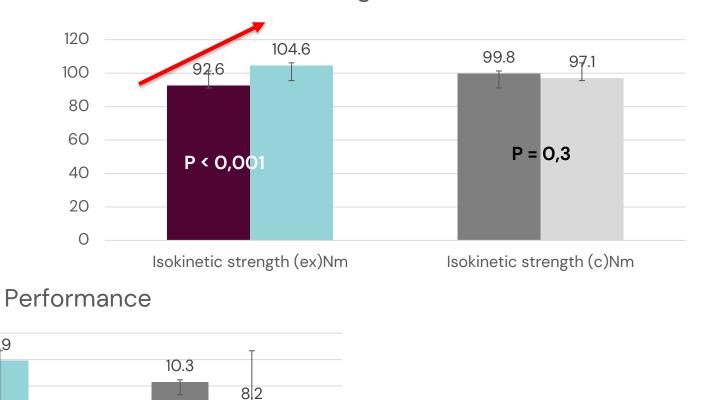


#### Progressive Resistance Exercise Training in CKD: A Feasibility Study

Emma L. Watson, PhD,<sup>1</sup> Neil J. Greening, MD,<sup>2</sup> João L. Viana, PhD,<sup>3</sup> Jaspreet Aulakh, BSc,<sup>1</sup> Danielle H. Bodicoat, PhD,<sup>4</sup> Jonathan Barratt, PhD,<sup>1</sup> John Feehally, DM,<sup>5</sup> and Alice C. Smith, PhD<sup>1,5</sup>


10

8 6


4

2 0

Quantity (cm2)



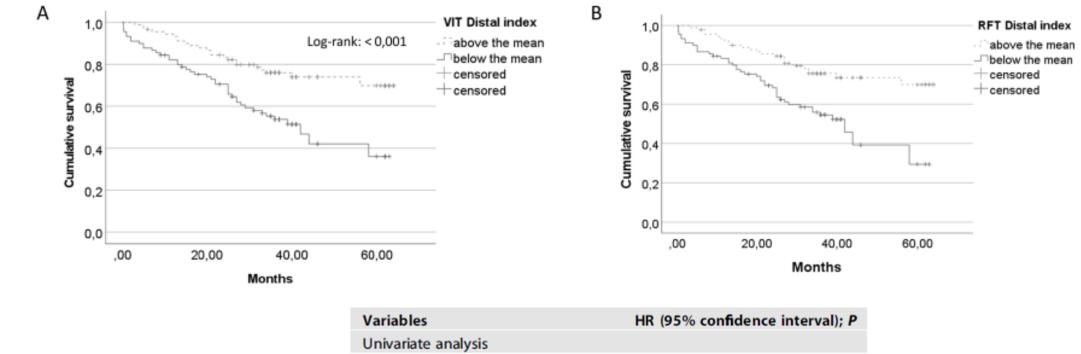
Strength (Nm)



ESWT: endurance shuttle walking test

ESWT (ex)min

P = 0,04


9,5

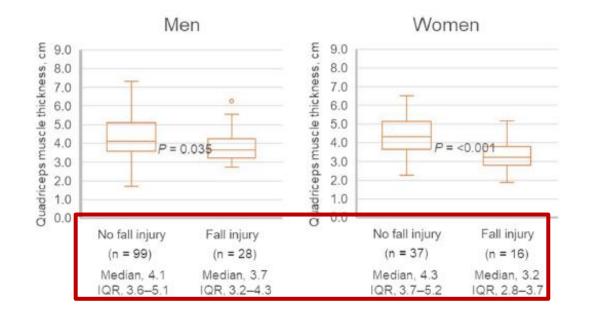
ESWT (c)min

P = 0,1

Am J Kidney Dis. 2015;66(2):249-257

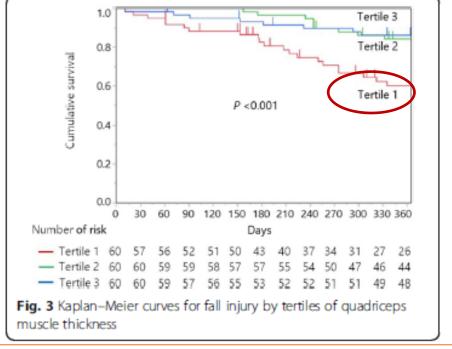
### US as a prognostic tool




181 patients, ref value < median of the distribution

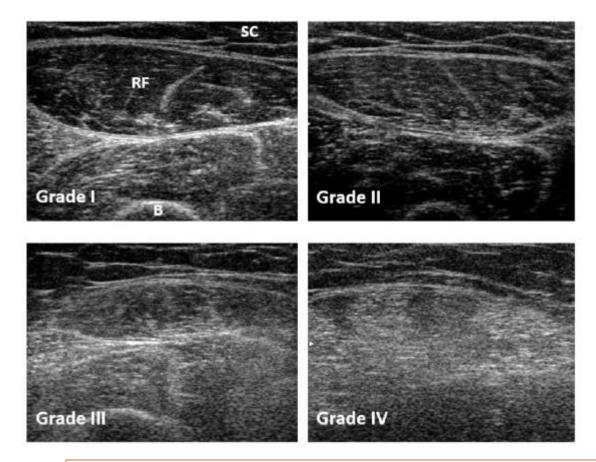
| Variables                            | HR (95% confidence interval); P |
|--------------------------------------|---------------------------------|
| Univariate analysis                  |                                 |
| VIT Distal index below<br>the median | 2.41 (1.45–4.00); 0.001         |
| RFT Distal index below<br>the median | 2.46 (1.47–4.11); <0.001        |
| Multivariable analysis <sup>a</sup>  |                                 |
| VIT Distal index below<br>the median | 1.71 (1.01–2.89); 0.045         |
| RFT Distal index below<br>the median | 1.57 (0.90–2.74); 0.113         |
|                                      |                                 |

Adjusted for age, serum creatinine, serum albumin, diabetes and cardiovascular disease.


Quantitative sonographic assessment of quadriceps muscle thickness for fall injury prediction in patients undergoing maintenance hemodialysis: an observational cohort study

Asuka Sai<sup>1</sup>, Kentaro Tanaka<sup>2,3,4</sup>, Yasushi Ohashi<sup>3\*</sup>, Akifumi Kushiyama<sup>5,4</sup>, Yoshihide Tanaka<sup>6</sup>, Shuta Motonishi<sup>7</sup>, Ken Sakai<sup>8</sup>, Shigeko Hara<sup>9</sup> and Takashi Ozawa<sup>1</sup>



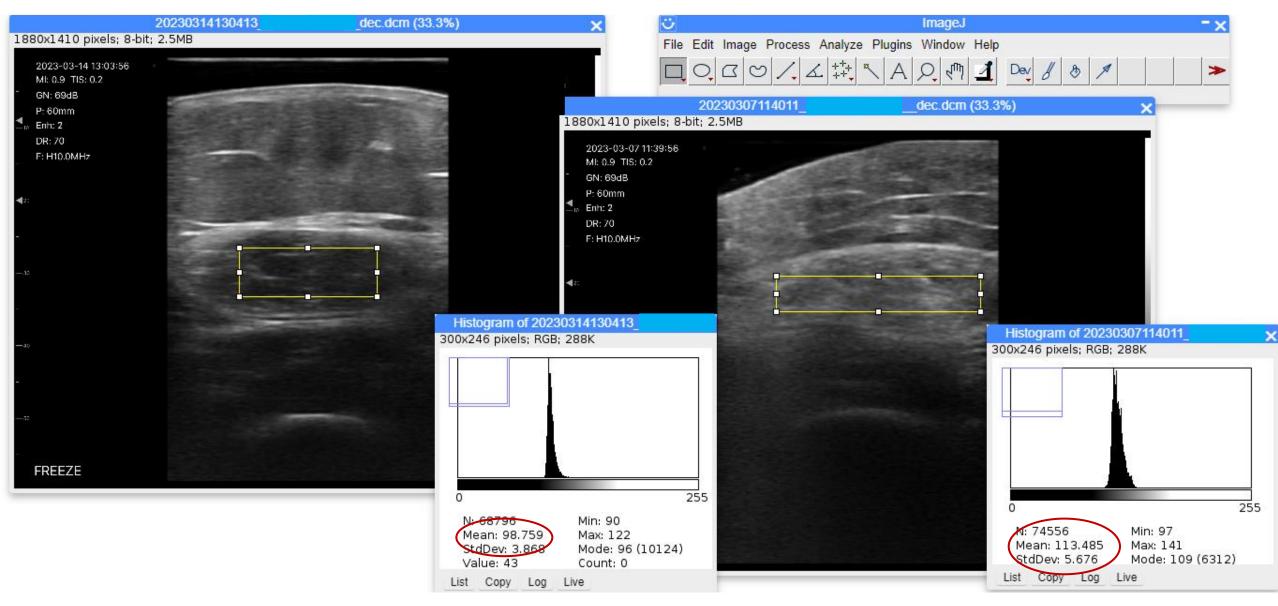

Increased risk of falls in patients with lower total quadriceps muscle thickness

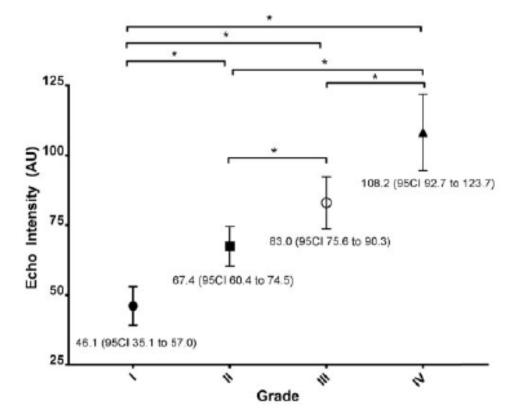




Hazard ratio [95% CI], 2.33 [1.22-4.52], P < 0.001

## US to assess muscle quality





Qualitative US assessment of RF skeletal muscle pathology using Heckmatt's scale.

Grade I: US appearance shows predominantly dark RF muscle bordered by subcutaneous fat (SC) and a bright, distinct bone reflection; Grade II: increased signal in the RF with preserved bone reflection; Grade III: moderately increased signal and reduced bone reflection; Grade IV: markedly increased signal and absent bone reflection.

 $\uparrow$  echogenicity =  $\uparrow$  fat infiltration

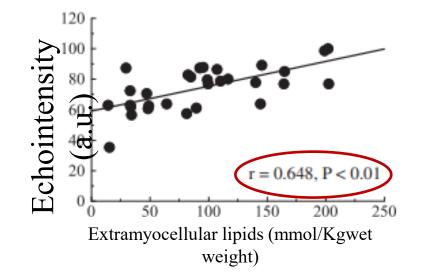






**FIGURE 3**: EI for each Heckmatt's scale group (Groups I, II, III and IV). Data presented as mean and 95% CI. Significance set at P < 0.050.

- Intra-rater reliability of Heckmatt's: Rater 1, ICC r = 0.769; Rater 2, ICC r = 0.773, both P<0.001)</li>
- Inter-rater reliability: ICC r = 0.760, P<0.001)
- Raters agreed on 84% of the gradings



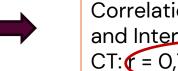

Original contribution

Intramuscular adipose tissue determined by T1-weighted MRI at 3 T primarily reflects extramyocellular lipids

Hiroshi Akima <sup>a,b,\*</sup>, Maya Hioki <sup>c</sup>, Akito Yoshiko <sup>c</sup>, Teruhiko Koike <sup>a,c</sup>, Hisataka Sakakibara <sup>c,1</sup>, Hideyuki Takahashi <sup>d</sup>, Yoshiharu Oshida <sup>a, c</sup>

Magnetic Resonance Imaging 34 (2016) 397-403




Journal of Clinical Medicine



Article

The Comparative Associations of Ultrasound and **Computed Tomography Estimates of Muscle Quality** with Physical Performance and Metabolic Parameters in Older Men

J. Clin. Med. 2018, 7, 340; doi:10.3390/jcm7100340

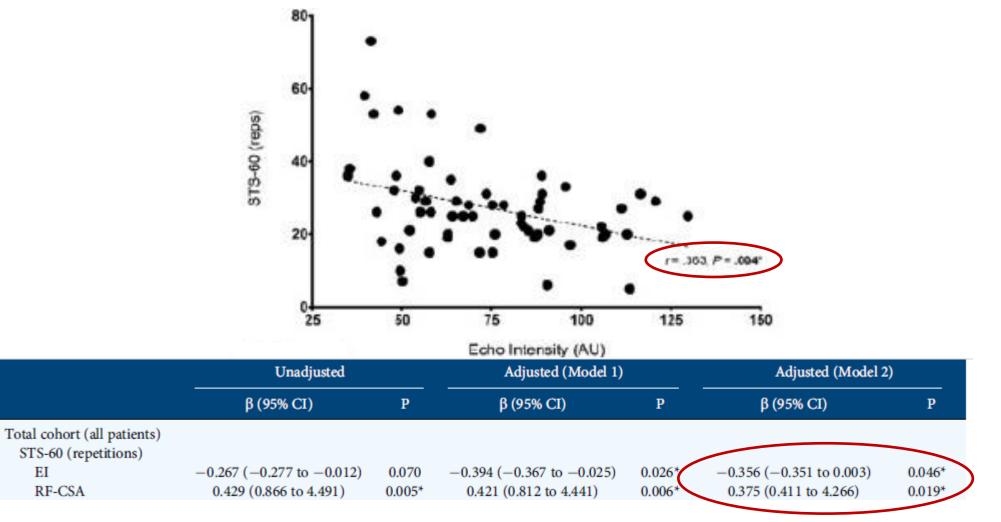


Correlation between echo intensity and Intermuscular adipose tissue by CT: **(** = 0,73 p < 0,001



#### Table 4

Anthropometric and laboratory data, muscle strength, physical performance, and skeletal muscle mass assessment by ultrasound in older men.


| Parameter                       | TO (baseline)   | T1 (6 months)      | T2 (12 months)          | p-value                    |
|---------------------------------|-----------------|--------------------|-------------------------|----------------------------|
| Weight (kg)                     | 69.3 ± 13.8     | 68.7 ± 13.4        | 68.0 ± 13.0             | 0.37                       |
| BMI (kg/m <sup>2</sup> )        | $25.6 \pm 5.5$  | 24.7 ± 4.1         | $24.7 \pm 4.2$          | 0.16                       |
| Serum albumin, g/dL             | $3.9 \pm 0.3$   | $3.9 \pm 0.2$      | $3.9 \pm 0.2$           | 0.64                       |
| nPCR_g/kg                       | 1.07 + 0.04     | 1.09 ± 0.05        | 1.09 ± 0.07             | 0.32                       |
| CC (cm)                         | 31.6 ± 2.1      | 31.1 ± 1.9         | 29.6 ± 2.7 <sup>b</sup> | < <b>0.01</b> <sup>a</sup> |
| Low CC (n, %)                   | 13 (92.9)       | 14 (100.0)         | 14 (100.0)              | 0.37                       |
| HGS (kgf)                       | $24.4 \pm 6.5$  | $25.6 \pm 7.4$     | $24.8 \pm 6.8$          | 0.48                       |
| Low HGS (n. %)                  | 11 (78.6)       | 11 (78.6)          | 10 (71.4)               | 0.37                       |
| Gait speed (m/s)                | $0.94 \pm 0.10$ | $0.90 \pm 0.08$    | $0.84 \pm 0.07^{b}$     | < <b>0.01</b> <sup>a</sup> |
| Low physical performance (n, %) | 1 (7.1)         | 1 (7.1)            | 3 (21.4)                | 0.14                       |
| Muscle ultrasound               |                 |                    |                         |                            |
| QT (mm)                         | 20.5 ± 1.7      | 18.8 ± 1.7         | $16.5 \pm 1.4^{b}$      | < <b>0.01</b> <sup>a</sup> |
| RF-CSA (mm <sup>2</sup> )       | 256.0 ± 32.9    | 229.2 ± 30.0       | $204.2 \pm 25.1^{b}$    | < <b>0.01</b> <sup>a</sup> |
| Echogenicity (0–255)            | $104.5 \pm 4.8$ | $120.2 \pm 4.6$    | $143.9 \pm 3.1^{b}$     | < <b>0.01</b> <sup>a</sup> |
| Pennation angle (°)             | 15.7 ± 1.3      | $13.5 \pm 1.2^{b}$ | $14.8 \pm 1.0$          | <b>0.01</b> <sup>a</sup>   |

BMI: body mass index; nPCR: normalized protein catabolic rate; CC: calf circumference; HGS: handgrip strength; QT: quadriceps muscle thickness; RF-CSA: rectus femoris muscle cross-sectional area.

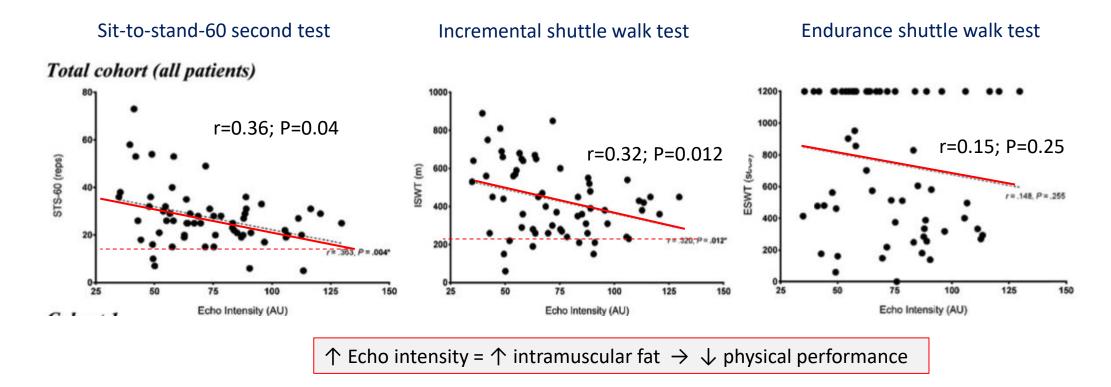
<sup>a</sup> Repeated measures ANOVA

<sup>b</sup> Post hoc (Bonferroni), p < 0.05 vs.  $T0^{c}$ .

## Association of muscle echointensity with muscle function



Wilkinson et al. Nephrol Dial Transplant (2019) 34: 1344-1353


## Lower quadriceps torque in healthy adults with worse muscle quality by echogenicity assessment

|                                       | Echogenicity <sup>b</sup><br>≤ percentile<br>25th | Echogenicity<br>> percentile<br>25th | p for comparisons<br>according to<br>echogenicity |
|---------------------------------------|---------------------------------------------------|--------------------------------------|---------------------------------------------------|
| Women                                 |                                                   |                                      |                                                   |
| Number of observations                | 20                                                | 60                                   |                                                   |
| Body mass index (kg (m <sup>2</sup> ) | 30.5 (28.2,31.8) <sup>a</sup>                     | 29.5 (28.2,31.6)                     | NS                                                |
| Handgrip strength (kg)                | 24.5 (22.5,28)                                    | 24.5 (21,26)                         | NS                                                |
| Quadriceps torque (N)                 | 356.5 (337,379)                                   | 327 (290.5,357)                      | <0.01                                             |
| Men                                   |                                                   |                                      |                                                   |
| Number of observations                | 9                                                 | 25                                   |                                                   |
| Body mass index (kg (m <sup>2</sup> ) | 30.7 (28.8,32.3)                                  | 29.9 (29.2,31.1)                     | NS                                                |
| Handgrip strength (kg)                | 47 (45,50)                                        | 39 (33,45)                           | <0.01                                             |
| Quadriceps torque (N)                 | 567 (547,596)                                     | 511 (474,553)                        | 0.02                                              |

<sup>a</sup> = median (percentile 25th, percentile 75th).


<sup>b</sup> = Assessed as grayscale density of ultrasound images.

# Association between Echo intensity and physical performance – Ultrasound CKD (not on dialysis) (n=61) 55.6 ±14.2 years

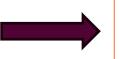


Wilkinson et al, Nephrol Dial Transplant 34:1344-1353, 2019

### **Comparing methods**



Prado C et al. Clin Nutr 2022;41(10):2244-2263. doi: 10.1016/j.clnu.2022.07.041.




### Highly portable Low cost Easy to use



## Open issues with US for clinical practice

- Diagnostic capacity: Population and sex based reference values still to be defined
- Methodological issues:
  - $\rightarrow$  definition of site of scan
  - $\rightarrow$  Identification of landmarks
  - $\rightarrow$  patient position
  - → Probe placement including angle and force applied



Impact accuracy of results and contribute to heterogeneity

Appropriate training with validation and reliability work should be performed to ensure consistency with measurements

## Summary

- Muscle abnormalities is frequent in CKD/ESKD
- Assessment of muscle quantity, quality and function are essential itens in the comprehensive nutritional assessment

|    | Commonly used<br>parameters                                                        | Pros                                                                                                                                                              | Cons                                                                                                                                       |
|----|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| US | Muscle size (CSA, volume)<br>Muscle thickness<br>Echo intensity<br>Pennation angle | Inexpensive<br>No radiation<br>Portable<br>Real time visualization of target<br>structure<br>Clinical application<br>Monitoring tool<br>Association with outcomes | Operator skills and<br>training required<br>Reliability and accuracy<br>depend on operator<br>No diagnostic capacity<br>– lack of cut-offs |



## Nutrition care for patients with chronic kidney disease: an immersive workshop

A course that provides comprehensive, evidence-based knowledge on renal nutrition care, equipping healthcare professionals—whether new or experienced—with practical insights for daily clinical practice and foundational guidance for advancing research in the field.

Offered with the help of sponsorship by Fresenius Kabi.

Apply to the course 🖸

https://utbildning.ki.se/uppdragsutbildning/kursutbud/nutrition-care-for-patients-with-chronic-kidney-disease-an-immersive-workshop