

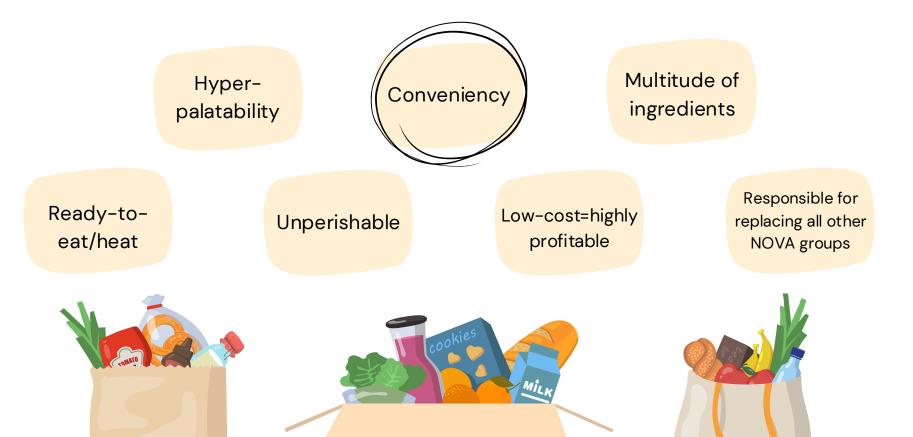

Food additives containing potassium, phosphorus, and sodium in ultraprocessed foods: Potential harms to individuals with chronic kidney disease

Valeria Cecchini, CLINTEC, Karolinska Institutet

# Ultra-processed food according to the NOVA System

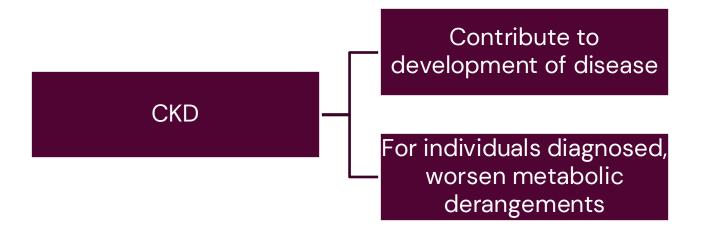
## The NOVA food classification system




#### The NOVA food classification system



### **UPFs** manufacturing


Extraction of fat, sugar, starches, proteins from whole foods Chemical processing (hydrogenation, hydrolysis, etc.) Assembly of un- and -modified food substance (moulding, extrusion, etc.) Addition of cosmetic additives (flavour enhancers, emulsifiers, colours, etc.) Sophisticated, synthetic packaging

#### Hallmarks of UPFs



#### UPFs potential health risks

 High UPFs consumption → linked to type 2 diabetes, cardiovascular disease, obesity, cancer, chronic kidney disease (CKD)



### Hypothesis

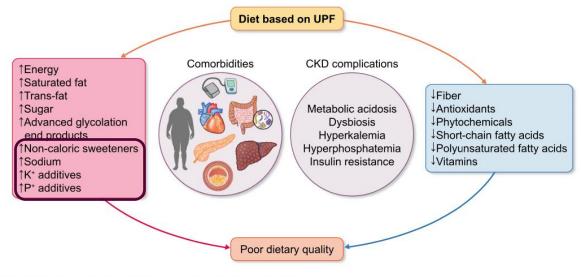
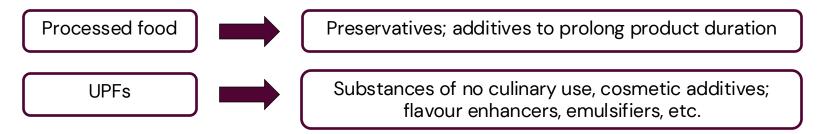



Figure 2: Intersection of a diet based on UPFs in driving complications related to CKD.

Avesani CM, et al. Clin Kidney J, 2023

#### Food additives and health outcomes


#### What are food additives?



- Sustances that are not consumed on their own or commonly used as culinary ingredients
- They can be found in both processed and ultra-processed foods (UPFs)
- European Union (EU) legislation allows food additives for 26 technological purposes
- Food additives can be added during food production, processing, packaging

#### **Additives in UPFs**

- UPFs are formulations of ingredients often created by a serie of industrial processes
- Additives can be found mainly in processed and UPFs for different purposes



Monteiro, CA et al. 2019. Ultra-processed foods, diet quality, and health using the NOVA classification system. Rome, FAO.

11

#### Food additives in UPFs

- Food additives for cosmetic functions are a hallmark of UPFs
- For NOVA, 12 classes of food additives with cosmetic functions as markers of UPFs

| Classes of cosmetic food additives |                     |                            |  |  |  |  |  |  |
|------------------------------------|---------------------|----------------------------|--|--|--|--|--|--|
| Flavours                           | Flavour enhancers   | Colours                    |  |  |  |  |  |  |
| Emulsifiers                        | Emulsifying salts   | Sweeteners                 |  |  |  |  |  |  |
| Thickeners                         | Anti-foaming agents | Bulking agents             |  |  |  |  |  |  |
| Carbonating agents                 | Foaming agents      | Gelling ang glazing agents |  |  |  |  |  |  |

• More than 330 authorised FAs in the European Union (E-numbers, e.g., E202, E500, etc.)

| Proteini                                                                                  | A STATE OF A | HAVR                                                            | EDALS                                          |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|
| Sait / Suola                                                                              |                                                                                                                 |                                                                 |                                                |
| Mineralamnen / Mineraler / Kivennäisaineet:                                               | C.D. 90.10                                                                                                      |                                                                 |                                                |
|                                                                                           | AUDA MOMA VALIMINA TÄVDENNETTVA                                                                                 | RENA S                                                          | IFTRAD                                         |
| * = 15% av dagligt reference                                                              | LILLY ALL ALLIPUCET IN                                                                                          |                                                                 |                                                |
| daglig veferenceindtag / vuorokautisen saannin vard DSI-                                  | ja auringonkukkaöliy, kalsium, suola).                                                                          | Havredals är upp<br>utvecklat i Uppland,                        | Drochucosat i Canadana                         |
| ullul                                                                                     | mfosfaatit), jodi, vitamiinit (riboflaviin                                                                      | med svensk hav                                                  | re och rapsolja,                               |
|                                                                                           |                                                                                                                 |                                                                 |                                                |
| IN ORLDIENSER 75 AT, KOKOSMIOIK IS 5% I KOKOSGIAdda upteral i i i AVIG                    | TETTAVA SECONDER DE LA SECONDE DE LA SECONDE DE LA SECONDE                                                      | INGREDIENSER                                                    | ANVÄNDNING                                     |
| havssalt, arom, stak and an and a start and a meder (kaliumostater), kalciumowe)          | HAVREDRYCK FÖR KAFFE, BERIKAD MED                                                                               | Havrebas (vatten, havre<br>11%), rapsolja, surhetsrecile-       | SKUMMAD I KAFFE                                |
| Kall fillefiald spara acter linga jordnotter) Fri fran mick och alutan hill               | I INGREDIENSEK. Haviebas (vallen, yr                                                                            | Konele martel / lt lt c                                         | Skummas väl kyld och                           |
| sfri. Källa till kalcium, satia till vegetabiliskt protein. Naturligt låg fetthalt. solro | solja, kalcium, salt), vatten, surhetsregle<br>vitaminer (riboflavin (B2), B12 och D2).                         | tat), kalcium, stabiliserings-<br>medel (E473), salt, vitaminer | rejält omskakad. Ger<br>ett fint skum med en   |
| SE: Sockerfri och vitaminberikad lågkaloridryck med palinne                               | whaller 10 % havre. Växtbaserad produkt.                                                                        | (riboflavin, D, B12)                                            | mellanhög krona.                               |
|                                                                                           |                                                                                                                 | NÄRINGSINNEHÅLL PER 100 G                                       | SOM DEN ÄR                                     |
| Innenalier Souringsmeder.                                                                 | HNTOSISÄLTÖ/NÄRINGSVARDE/ 100 ml:                                                                               | Energi (kJ) 267 kJ                                              | Produkten fungerar<br>också utmärkt utan att   |
| INGREDIENSER, Vallen, apersine kiraki, syna teresis                                       | ergia/energi                                                                                                    | Energi (kcal) 63 kcal<br>Fett 2.5 g                             | skummas och blandar                            |
| the standard D hugapack with min B12 surners regier                                       | sva/fett<br>osta tyydyttynyttä / varav mättat fett                                                              | Fett         2,5 g           Varav mättat         0,3 g         | sig väl i bryggkaffet.                         |
|                                                                                           | ilihydraatit/kolhydrat<br>josta sokereita / varav sockerarter                                                   | Kolhydrater 8,9 g<br>Varav sockerarter                          | BÄST FÖRE                                      |
| stabi                                                                                     | roteiini/protein                                                                                                | från havre 4,2 g                                                | Se toppen av förpack-<br>ningen. Förvaras kylt |
| Innehåller en källa till fenvlalanin.                                                     | uola/salt                                                                                                       | i lotein nya                                                    | efter öppnande i högst                         |
| Bäst före: Se förnackningens Ovanslda.                                                    |                                                                                                                 | vitamin D 1,0 µg (20%*)                                         | +8 grader C. Hållbar i<br>minst 5 dagar efter  |
| Kan förvaras i rumstemperatur. Opphad Torpackning To                                      | Ribonaviini (B2)/noonaviini B12<br>B12-vitamiini/vitamin B12<br>Kalsium/kalcium                                 | Riboflavin 0,15 mg (11%*)<br>Vitamin B12 0,27 μg (11%202        |                                                |
| Courtesy of Carla Avesani agar. Serveras kyld.                                            | Jodi/jod                                                                                                        | Kalcium 120 mg (15%*)                                           | ATERVINNING                                    |

## Food additives: insights from Response-K Study



Post-prandial effect of potassium study. Healthy meal with no ultraprocessed food and no food additives. Photo: Carla Avesani

| Data from bromatology<br>laboratory                                                                                                                          | Potassium (mg) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Breakfast without<br>additives                                                                                                                               | 880.54         |
| Breakfast with additives                                                                                                                                     | irces of P     |
| Breakfast without<br>additives<br>Breakfast with additives<br>Data from Dietist N den so<br>Software<br>Breakfast with additives<br>Breakfast with additives | otassium (mg)  |
| Breakt as are at at add These are                                                                                                                            | 983.5          |
| Breakfast with additives                                                                                                                                     | 719.8          |

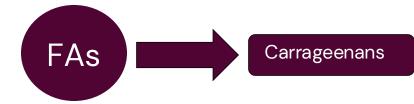
Nitrates/ nitrites

Etemadi, A. *et al.* **Mortality from different causes** associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. *BMJ* (2017)

Song, P. et al. Dietary nitrates, nitrites, and nitrosamines intake and the risk of **gastric cancer**: a metaanalysis. *Nutrients* (2015)

Quist, A. J. L. *et al.* Ingested nitrate and nitrite, disinfection by-products, and **pancreatic cancer risk** in postmenopausal women. *Int. J. Cancer* (2018)

Hosseini, F. *et al.* Nitrate-nitrite exposure through drinking water and diet and risk of **colorectal cancer**: a systematic review and meta-analysis of observational studies. *Clin. Nutr. (2020)* 


Chazelas E. *et al.* Nitrites and nitrates from food additives and natural sources and **cancer risk**: results from the NutriNet-Santé cohort. Int J Epidemiol (2022)



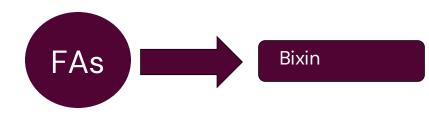
Fas\*

\*Food additives

Bhattacharyya, S. *et al.* Exposure to the common food additive carrageenan leads to **glucose intolerance**, **insulin resistance and inhibition of insulin signalling** in HepG2 cells and C57BL/6J mice. *Diabetologia* (2012)



Bhattacharyya, S. *et al.* Common food additive **carrageenan inhibits proglucagon expression and GLP-1** secretion by human enteroendocrine L-cells. *Nutr. Diabetes* (2024)


FAs Glutamate

Ataseven, N., Yüzbaşıoğlu, D., Keskin, A. Ç. & Ünal, F. **Genotoxicity** of monosodium glutamate. *Food Chem. Toxicol* (2016)

He, K. *et al.* Consumption of monosodium glutamate in relation to incidence of **overweight** in Chinese adults: China Health and Nutrition Survey (CHNS). *Am. J. Clin. Nutr.* (2011)

Chakraborty, S. P. **Patho-physiological and toxicological** aspects of monosodium glutamate. *Toxicol. Mech. Methods* (2018)

Hasenböhler A. *et al.* Food additive monosodium glutamate and risk of **cardiovascular diseases** – NutriNet–Santé cohort, Eur J Public Health (2024)



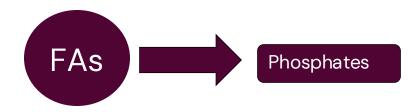
Hagiwara, A. *et al.* A thirteen-week oral **toxicity** study of annatto extract (norbixin), a natural food color extracted from the seed coat of annatto (*Bixa orellana* L.), in Sprague-Dawley rats. *Food Chem. Toxicol.* (2003)

Uysal, H. *et al.* The hazardous effects of three natural food dyes on **developmental stages and longevity** of *Drosophila melanogaster. Toxicol. Ind. Health.* (2015)

Bandyopadhyay, A. *et al.* **Genotoxicity** testing of low-calorie sweeteners: aspartame, acesulfame-K, and saccharin. *Drug Chem. Toxicol.* (2008)

Azad, M. B. *et al.* Nonnutritive sweeteners and **cardiometabolic health**: a systematic review and metaanalysis of randomized controlled trials and prospective cohort studies. *CMAJ* (2017)

Suez, J. *et al.* Artificial sweeteners induce **glucose intolerance by altering the gut microbiota**. *Nature* (2014).


Soffritti, M. *et al.* Sucralose administered in feed, beginning prenatally through lifespan, induces **hematopoietic neoplasias** in male swiss mice. *Int. J. Occup. Environ.* (2017)

Abou-Donia, M. B. *et al.* Splenda **alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450** in male rats. J. Toxicol. Environ. Health Part A (2008).



Artificial sweeteners

19



Ritz, E. *et al.* Phosphate additives in food-a **health risk**. *Dtsch. Arztebl. Int.* (2012).

McCarty, M. F. *et al.* Bioavailable dietary phosphate, a mediator of **cardiovascular disease**, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives. *Nutrition* (2014).

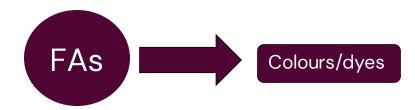
Emulsifiers

Chassaing, B. *et al.* Dietary emulsifiers impact the mouse gut microbiota **promoting colitis and metabolic syndrome**. *Nature* (2015).

Viennois, E. et al. Dietary Emulsifier-induced **low-grade inflammation promotes colon carcinogenesis.** *Cancer Res.* (2017).

Viennois, E. *et al.* Dietary emulsifiers directly impact adherent-invasive *E. coli* gene expression to drive chronic intestinal inflammation. *Cell Reports* (2020).

Salame C. *et al.* Food additive emulsifiers and the risk of **type 2 diabetes**: analysis of data from the NutriNet-Santé prospective cohort study. *Lancet Diabetes Endocrinol* (2024)


Sellem, L. *et al.* Food additive emulsifiers and risk of **cardiovascular disease** in the NutriNet–Santé cohort: prospective cohort study. BMJ (2023)

Furuhashi, H. *et al.* Dietary emulsifier polysorbate-80-induced **small-intestinal vulnerability** to indomethacin-induced lesions via dysbiosis. J Gastroenterol Hepatol (2020).

FAs

Sellem, L. *et al.* Food additive emulsifiers and **cancer risk**: Results from the French prospective NutriNet-Santé cohort. PLoS medicine (2024)

Leo, L. *et al.* Occurrence of azo food dyes and their effects on **cellular inflammatory responses**. *Nutrition* (2018).



Sasaki, Y. F. *et al.* The comet assay with 8 mouse organs: results with 39 currently used food additives. *Mutat. Res.* (2002).

Kraemer M. *et al.* Food additives in childhood: a review on consumption and health consequences. *Rev Saude Publica* (2022)

## Summarising...

FAs have been linked to

- Mortality
- Cancers
- Cardiometabolic alterations
- Gut microbiota alterations
- Endocrine alterations
- Inflammation
- Oxidative stress

## Food additives: distribution and co-occurrence in 126,000 food products of the French market

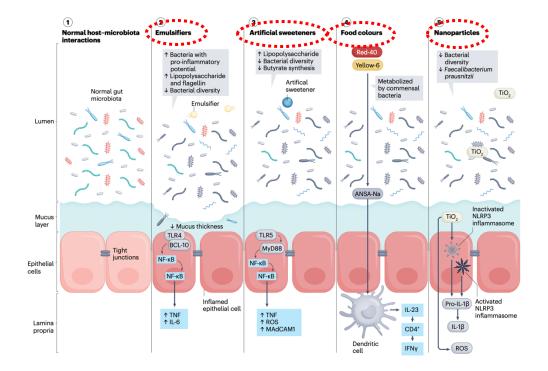
Eloi Chazelas ⊠, Mélanie Deschasaux, Bernard Srour, Emmanuelle Kesse-Guyot, Chantal Julia, Benjamin Alles, Nathalie Druesne-Pecollo, Pilar Galan, Serge Hercberg, Paule Latino-Martel, Younes Esseddik, Fabien Szabo, Pierre Slamich, Stephane Gigandet & Mathilde Touvier Article | <u>Open access</u> | Published: 04 October 2021

Scientific Reports 10, Article number: 3980 (2020) Cite this article

#### s article Exposure to food additive mixtures in 106,000 French adults from the NutriNet-Santé cohort

Eloi Chazelas ⊠, Nathalie Druesne-Pecollo, Younes Esseddik, Fabien Szabo de Edelenyi, Cédric Agaesse, Alexandre De Sa, Rebecca Lutchia, Pauline Rebouillat, Bernard Srour, Charlotte Debras, Gaëlle Wendeu-Foyet, Inge Huybrechts, Fabrice Pierre, Xavier Coumoul, Chantal Julia, Emmanuelle Kesse-Guyot, Benjamin Allès, Pilar Galan, Serge Hercberg, Mélanie Deschasaux-Tanguy & Mathilde Touvier

Scientific Reports 11, Article number: 19680 (2021) Cite this article


19k Accesses | 55 Citations | 218 Altmetric | Metrics

- **Population:** 106,489 adults (69% women) mean age 42.9 years
- **Methodology:** 24-hour dietary records over the first two years of follow-up, detailing all consumed foods and beverages, including brand information
- This data was cross-referenced with three large-scale composition databases to identify the presence and quantity of 90 specific food additives
- **48 additives** were consumed by more than 10% of participants (modified starches and citric acid were consumed by over 90% of the cohort)

**Commonly consumed FAs with potential health concerns:** •Several additives with potential adverse health effects have been suggested by recent experimental studies, were widely consumed:

- Lecithins: 86.6% of participants
- Mono- and diglycerides of fatty acids: 78.1%
- Carrageenan: 77.5%
- Sodium nitrite: 73.9%
- Di-, tri-, and polyphosphates: 70.1%
- Potassium sorbate: 65.8%
- Potassium metabisulphite: 44.8%
- Acesulfame K: 34.0%
- Cochineal: 33.9%
- Potassium nitrate: 31.6%
- Sulfite ammonia caramel: 28.8%
- Bixin: 19.5%
- Monosodium glutamate: 15.1%
- Sucralose: 13.5%

#### Food additives and the gut microbiome



- Increase in lipopolysaccharide, metabolites = alteration of gut microbiome
- Higher permeability
- Inflammation

Whelan et al, Nature Reviews Gastroenterology & Hepatology, 2024

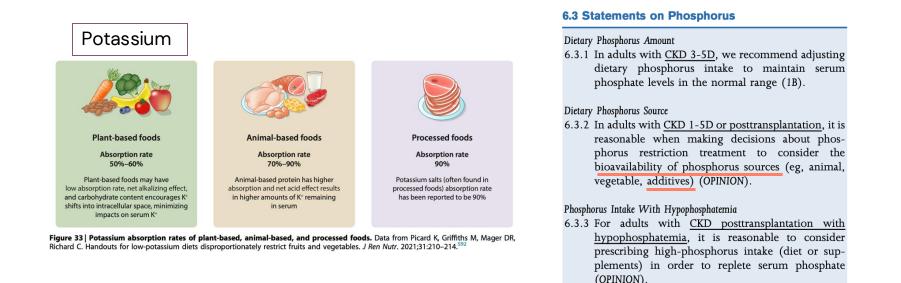
## Food additives in the context of CKD

#### Concerns about K- and P-based additives

#### Understanding Sources of Dietary Phosphorus in the Treatment of Patients with Chronic Kidney Disease

Kamyar Kalantar-Zadeh,<sup>\*†‡</sup> Lisa Gutekunst,<sup>§</sup> Rajnish Mehrotra,<sup>†</sup> Csaba P. Kovesdy,<sup>|¶</sup> Rachelle Bross,<sup>\*†</sup> Christian S. Shinaberger,<sup>\*†‡</sup> Nazanin Noori,<sup>\*†</sup> Raimund Hirschberg,<sup>†</sup> Debbie Benner,<sup>\*\*</sup> Allen R. Nissenson,<sup>†\*\*</sup> and Joel D. Kopple<sup>\*† ††</sup>

\*Harold Simmons Center for Chronic Disease Research and Epidemiology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California; <sup>†</sup>David Geffen School of Medicine and Departments of <sup>‡</sup>Epidemiology and <sup>††</sup>Community Health Sciences, School of Public Health, University of California, Los Angeles, Los Angeles, California; <sup>§</sup>Cleve-Hill DaVita Dialysis, Buffalo, New York; <sup>I</sup>Division of Nephrology, Salem Veterans Affairs Medical Center, Salem, Virginia; <sup>¶</sup>Division of Nephrology, University of Virginia, Charlottesville, Virginia; and \*\*DaVita Inc., El Segundo, California


#### PRACTICAL ASPECTS

#### Potassium Additives and Bioavailability: Are We Missing Something in Hyperkalemia Management?

Kelly Picard, BSC, RD J Ren Nutr. 2019 Jul;29(4):350-353

Phosphorus bioavailability: Food additives: 90% Animal products: 40-60% Plant foods: 20%-50% Potassium bioavailability: Food additives: 90-100% Fruit and vegetables: 50-60%

#### Concerns about K- and P-based additives



KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Stevens, P et al. Kidney International Ikizler TA, et al. KDOQI clinical practice guideline for nutrition in CKD: 2020 update. Am J Kidney Dis. 2020

#### Prevalence of K-, P- and Na-based additives

- Prevalence of P-based food additives → 36% (4% dairy snacks-67% meat products)
- Most commonly used: lecithin (E 322), pyrophosphate (E 450), and triphosphate (E 451)
- Prevalence of K-based food additives  $\rightarrow$  37.6%
- Most commonly used: E202; E252, E340, E450, E452, E508, and E950
- Prevalence of Na-based additives  $\rightarrow$  53.5%
- Most commonly used: sodium carboxymethylcellulose (E466)

Bayram, H. et al; J Food Compos Analysis. 2021. Tuominen M, et a;. J Ren Nutr. 2022 Martinez Pineda, et al.; Nutrients 2021

Karolinska Institutet - a medical university

# Food additives in the context of chronic kidney disease

Perspective Open access Published: 21 March 2025

#### Food additives containing potassium, phosphorus, and sodium in ultra-processed foods: potential harms to individuals with chronic kidney disease

<u>Valeria Cecchini</u> <sup>⊠</sup>, <u>Alice Sabatino, Barbara Contzen</u> & <u>Carla Maria Avesani</u>

- Do they worsen the metabolic complications that occur as kidney function declines?
- Food processing  $\rightarrow$  bioavailability

# Food additives in the context of chronic kidney disease

- Revision of the EU regulation regarding food additives, Commission Regulation (EU) No. 1129/2011
- Molecular weight analysis
- 41 potassium additives, 44 phosphorus additives and 88 sodium additives
- Different formulations are allowed in every food category

## Food additives in the context of chronic kidney

#### disease

Table 1. Number of authorised food additives containing potassium, phosphorus, and sodium in the European Union, their purposes and potential harmful effects to kidney health.

| Mineral    | N of authorised additives                                                                                                                                                                                                                                                                                                                                | Food categories                                                                                                                             | Purposes                                                                                                                                                                              | Potential harmful effects                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Potassium  | 41                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                             |                                                                                                                                                                                       |                                                                                                          |
|            | Group I <sup>3</sup> : E 261, E 326, E 332, E 336, E 337,<br>E 351, E 402, E 407, E 407a, E 415, E 418, E<br>440, E 470a, E 472c, E 501, E 508, E515, E<br>525, and E 577                                                                                                                                                                                | Potassium-containing additives are<br>authorised in food categories 1, 2, 3,<br>4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,<br>17, and 18 | Preservation, antioxidation, emulsification,<br>stabilisation, thickening, gelling, acidity<br>regulators, leavening, sodium replacement,<br>flavour enhancer, colour stabiliser, and | These additives can exacerbate<br>hyperkalemia                                                           |
|            | Other additives that may be regulated<br>combined: E 202, E 212, E 224, E 228, E<br>249, E 252, E 283, E 340, E 357, E 522, E<br>555, E 622, E 628, and E 632                                                                                                                                                                                            |                                                                                                                                             | sweetening                                                                                                                                                                            |                                                                                                          |
| Phosphorus | 44                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                             |                                                                                                                                                                                       |                                                                                                          |
|            | Group I: E 322, E 1200, E 1410, E 1412, E<br>1413, E 1414, and E 1442<br>Group II <sup>b</sup> : E 101                                                                                                                                                                                                                                                   | Phosphorus-containing additives are<br>authorised in food categories 1, 2, 3,<br>4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,              | Preservation, emulsification, stabilisation,<br>thickening, gelling, antioxidation, acidity<br>regulators, leavening, and colouring                                                   | These additives can exacerbate<br>hyperphosphatemia and bone-mineral<br>diseases                         |
|            | Other additives that may be regulated<br>combined: E 338, E 339, E 340, E 341, E<br>343, E 450, E 451, and E 452, E 626, E 627,<br>E 628, E 630, E 631, E 632, E 633, E 634,<br>and E 635                                                                                                                                                                | 17, and 18                                                                                                                                  |                                                                                                                                                                                       |                                                                                                          |
| Sodium     | 88                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                             |                                                                                                                                                                                       |                                                                                                          |
|            | Group I: E 262, E 301, E 325, E 331, E 335,<br>E 337, E 350, E 401, E 407, E 407a, E 415, E<br>418, E 440, E 466, E 469, E 470a, E 472c, E<br>500, E 514, E 524, E 576, E 640, E 1404, E<br>1450, E 1451<br>Group III <sup>6</sup> : E 101<br>Group III <sup>6</sup> : E 104, E 110, E 122, E 124, E<br>129, E 131, E 132, E 133, E 142, E 151, E<br>155 | Sodium-containing additives are<br>authorised in food categories 1, 2, 3,<br>4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,<br>17, and 18    | Preservation, antioxidation, emulsification,<br>stabilisation, thickening, gelling, leavening,<br>acidity regulator, anti-caking, colour<br>stabiliser, and flavour enhancer          | These additives can increase blood<br>pressure, renal plasma flow, and<br>glomerular filtration pressure |
|            | Other additives that may be regulated<br>combined: E 211, E 215, E 219, E 221, E<br>222, E 223, E 250, E 251, E 281, E 339, E<br>356, E 481, E 521, E 554, E 621, E627, E<br>631, and E 635                                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                                       |                                                                                                          |

Food categories: 1 Dairy products and analogues; 2 Fats and oils and fat and oil emulsions; 3 Edible ices; 4 Fruit and vegetables; 5 Confectionery; 6 Cereals and cereal products; 7 Bakery wares; 8 Meat; 9 Fish and fisheries products; 10 Egg and egg products; 11 Sugars, syrups, honey and table-top sweeteners; 12 Salts, spices, soups, sauces, salads and protein products; 13 Foods intended for particular nutritional uses as defined by Directive 2009/39/EC; 14 Beverages; 15 Ready-to-eat savouries and snacks; 16 Desserts excluding products covered in categories 1, 3 and 4; 17 Food supplements as defined in Directive 2002/46/EC excluding food supplements for infants and young children.

<sup>a</sup>Group I: no maximum numerical limit is established. However, these substances must be utilised following good manufacturing practices. Their usage should be limited to what is essential to fulfil their intended purpose, guaranteeing that the consumers are not deceived.

<sup>b</sup>Group II: food colours allowed at Quantum satis.

Group III: food colours with combined maximum limit.

#### **K-based additives**

- 41 K-additives authorised in Europe
- Found the most in breaded products, meat products, non-alcoholic beverages, ready-to-eat products, and cereal derivatives

| LKC * (<2    | 25% by Weight of K)         |                         | MKC * (2     | 5–39% by Weight of K)       |                         | HKC * (≥40% by Weight of K) |                                 |                            |  |
|--------------|-----------------------------|-------------------------|--------------|-----------------------------|-------------------------|-----------------------------|---------------------------------|----------------------------|--|
| E-<br>Number | Name                        | Potassium Weight<br>(%) | E-<br>Number | Name                        | Potassium Weight<br>(%) | E-<br>Number                | Name                            | Potassium<br>Weight<br>(%) |  |
| E 212        | Potassium benzoate          | 18.1                    | E 202        | Potassium sorbate           | 25.8                    | E 249                       | Potassium nitrite               | 43.6                       |  |
| E 228        | Potassium hydrogen sulphite | 9.1                     | E 224        | Potassium metabisulphite    | 31.7                    | E 340                       | Potassium diphosphates          | 44.0                       |  |
| E 261        | Potassium acetate           | 39.4                    | E 252        | Potassium nitrate           | 38.3                    | E 340                       | Potassium triphosphates         | 53.6                       |  |
| E 261        | Potassium diacetate         | 15.8                    | E 283        | Potassium propionate        | 34.5                    | E 450                       | Tetrapotassium<br>diphosphate   | 45.0                       |  |
| E 326        | Potassium lactate           | 20.1                    | E 332        | Potassium citrates          | 35.8                    | E 501ii                     | Potassium hydrogen<br>carbonate | 56.0                       |  |
| E 332        | Potassium citrates          | 16.8                    | E 336        | Potassium ditartrates       | 32.9                    | E 508                       | Potassium chloride              | 51.9                       |  |
| E 336        | Potassium tartrates         | 16.8                    | E 340        | Potassium<br>monophosphates | 28.4                    | E 515                       | Potassium sulphates             | 44.4                       |  |
| E 337        | Sodium potassium tartrate   | 13.7                    | E 351        | Potassium malate            | 26.0                    | E 525                       | Potassium hydroxide             | 62.7                       |  |

#### P-based additives

| Low content (<25% by weight) |                |                                                    |        |            | ontent (25-39% by wei |                                  |                    |     | tent (≥40% |         |        |
|------------------------------|----------------|----------------------------------------------------|--------|------------|-----------------------|----------------------------------|--------------------|-----|------------|---------|--------|
| 3-                           | Name           | Formula                                            | Weight | E number   | Nomo                  | Formula                          | Weight             | F   | Name       | Formula | Weight |
| number<br>Phospho            | M115           |                                                    | 1 P-h  | ased       | additive              | s author                         | ised i             | n Ì |            |         | (%)    |
| E 101                        | Riboflavin-5'- | $C_{17}H_{20}N_{4}$                                |        | uocu       | uuuuuvu               |                                  | 100001             |     |            |         |        |
| ii)                          | phosphate      | 01/12/04                                           |        |            | the El                | 1                                |                    |     |            |         |        |
| E 339                        | Monosodium     | Monohyo                                            |        |            |                       |                                  |                    | J   |            |         |        |
| i)                           | phosphate      | $NaH_2PO_4 \cdot H_2O$                             |        |            | pnospnate             | NaH <sub>2</sub> PO <sub>4</sub> |                    |     |            |         |        |
| E 339                        | Monosodium     | Dihydrate:                                         | 19.7   | E 341 (i)  | Monocalcium           | Anhydrous:                       | 25.9               |     |            |         |        |
| i)                           | phosphate      | NaH <sub>2</sub> PO <sub>4</sub> 2H <sub>2</sub> O |        |            | phosphate             | $Ca(H_2PO_4)_2$                  |                    |     |            |         |        |
| E 3 39                       | Disodium       | Na <sub>2</sub> HPO <sub>4</sub>                   | 21.8   | E 343 (i)  | Monomagnesium         | $Mg(H_2PO_4)_2$                  | 27.8               |     |            |         |        |
| ii)                          | phosphate      |                                                    |        |            | phosphate             |                                  |                    |     |            |         |        |
| E 3 39                       | Trisodium      | Na <sub>3</sub> PO <sub>4</sub>                    | 18.9   | E 343 (ii) | Dimagnesium           | MgHPO <sub>4</sub>               | 25.2               |     |            |         |        |
| iii)                         | phosphate      |                                                    |        |            | phosphate             |                                  |                    |     |            |         |        |
| E 340                        | Monopotassium  | $KH_2PO_4$                                         | 22.8   | E 450 (i)  | Disodium              | $Na_2H_2P_2O_7$                  | 27.6               |     |            |         |        |
| i)                           | phosphate      |                                                    |        |            | diphosphate           |                                  |                    |     |            |         |        |
| E 340                        | Dipotassium    | $K_2HPO_4$                                         | 17.6   | E 450 (ii) | Trisodium             | Anhy drous:                      | 25.1               |     |            |         |        |
| ii)                          | phosphate      |                                                    |        |            | diphosphate           | $Na_3HP_2O_7$                    |                    |     |            |         |        |
| E 340                        | Tripotassium   | $K_3PO_4$                                          | 14.6   | E 450      | Calcium               | $CaH_2P_2O_7$                    | 28.4               |     |            |         |        |
| iii)                         | phosphate      |                                                    |        | (vii)      | dihydrogen            |                                  |                    |     |            |         |        |
|                              |                |                                                    |        | -          | diphosphate           |                                  |                    |     |            |         |        |
| E 341                        | Monocalcium    | Monohydrate:                                       | 24.3   | E 451 (i)  | Pentasodium           | $Na_5O_{10}P_3$                  | 25.0               |     |            |         |        |
| i)                           | phosphate      | $Ca(H_2PO_4)_2 H_2O$                               |        |            | triphosphate          |                                  | <b>a-</b> <i>i</i> |     |            |         |        |
| E 341                        | Dicalcium      | Anhydrous:                                         | 22.3   | E 541      | Sodium aluminium      | Anhydrous:                       | 27.6               |     |            |         |        |
| ii)                          | phosphate      | CaHPO <sub>4</sub>                                 |        |            | phosphate, acidic     | $Na_3Al_2H_{15}(PO_4)_8$         |                    |     |            |         |        |
| E 341                        | Dicalcium      | Dihydrate:                                         | 17.6   | E 541      | Sodium aluminium      | Tetrahydrate:                    | 26.1               |     |            |         |        |
| ii)                          | phosphate      | CaHPO <sub>4</sub> · 2H <sub>2</sub> O             |        |            | phosphate, acidic     | $NaAl_{3}H_{14}(PO_{4})_{8}$     |                    |     |            |         |        |
|                              |                |                                                    |        |            |                       | $4H_2O$                          |                    |     |            |         |        |
| E 341                        | Tricalcium     | $Ca_3(PO_4)_2$                                     | 19.8   |            |                       |                                  |                    |     |            |         |        |
| iii)                         | phosphate      |                                                    |        |            |                       |                                  |                    |     |            |         |        |
| E450                         | Trisodium      | Monohydrate:                                       | 23.4   |            |                       |                                  |                    |     |            |         |        |
| ii)                          | diphosphate    | $Na_3HP_2O_7 \cdot H_2O$                           |        |            |                       |                                  |                    |     |            |         |        |

#### Karolinska Institutet - a medical university

30/05/2025

#### Sodium-based additives

| Sodium<br>E 101 | Riboflavin-5'-      | 88 Na-                                                                      | oase  | d additive<br>in the EU |                                   | orised | 339 (iii)   | Trisodium           | Na <sub>3</sub> P                   | 42.0 |
|-----------------|---------------------|-----------------------------------------------------------------------------|-------|-------------------------|-----------------------------------|--------|-------------|---------------------|-------------------------------------|------|
| (ii)            | phosphate           | P                                                                           |       | sulphite                | : Na <sub>2</sub> SO <sub>3</sub> |        | 2 337 (III) | phosphate           | $O_4$                               | 12.0 |
| E 102           | Tartrazine          | $\begin{array}{lll} C_{16}H_{9}N_{4}Na_{3}O_{9} & 11.5\\ S_{2} \end{array}$ | E 250 | Sodium nitrite          | NaNO <sub>2</sub>                 | 33.0   | E 500 (i)   | Sodium<br>carbonate | Na <sub>2</sub> C<br>O <sub>3</sub> | 43.4 |
| E 104           | Quinoline<br>yellow | C <sub>18</sub> H <sub>9</sub> NNa <sub>2</sub> O <sub>8</sub> S 9.6<br>2   | E 251 | Sodium nitrate          | NaNO <sub>3</sub>                 | 26.8   | E 524       | Sodium<br>hydroxide | NaO<br>H                            | 57.5 |

Cecchini V et al., Eur J Clin Nutr, 2025

**Table 5:** Strategies to address ultra-processed food consumption in chronic kidney disease stages 3 to 5

| Action      | How                    |
|-------------|------------------------|
| Assess UPF  | Use one of these:      |
| consumption | - 24-hour food recall. |
|             | - Dietary records.     |
|             | - Food-frequency       |
|             | questionnaire.         |
|             | - Nova UPF screener.   |

**Table 5:** Strategies to address ultra-processed food consumption in chronic kidney disease stages 3 to 5

Avesani CM, et al., 2025 accepted to Clin J Am Soc Nephrol Identify underline causes for high UPF consumption

Perform nutrition anamneses asking on:

- Cooking skills and possible economic challenges.
- Living situation (alone or with others that can buy and prepare food).
- Physical weakness or fatigue that makes cooking difficult.
- Dietary restrictions to control fruits and vegetable intake leading to replace these for UPF.

**Table 5:** Strategies to address ultra-processed food consumption in chronic kidney disease stages 3 to 5

Avesani CM, et al., 2025 accepted to Clin J Am Soc Nephrol Work on solutions depending on the underline causes

- Engage caregivers and / or social workers for support if needed.
- Simplify cooking routines for promoting cooking at home.
   Assist patients and caregivers to make grocery shopping lists with products suitable for their clinical condition and food habits.
   Ease fruits and vegetable restrictions when medically appropriate.

**Table 5:** Strategies to address ultra-processed food consumption in chronic kidney disease stages 3 to 5

Avesani CM, et al., 2025 accepted to Clin J Am Soc Nephrol

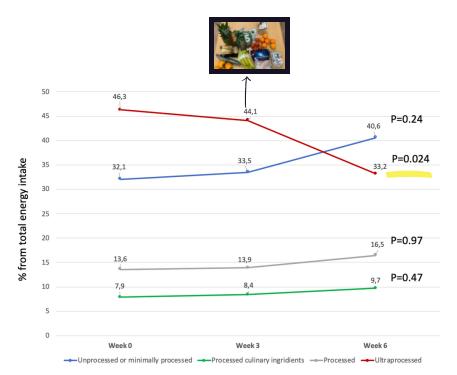
| Invest on food<br>literacy | <ul> <li>Educate patients and caregivers<br/>to read food labels for identifying<br/>food additives.</li> <li>Develop educational infographics<br/>on how to identify UPF and<br/>additives in food label.</li> <li>If needed, assist patients and<br/>caregivers to choose UPF with<br/>fewer additives containing<br/>potassium, phosphorus and<br/>sodium.</li> </ul> |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equip healthcare           | Team training using teaching micro-                                                                                                                                                                                                                                                                                                                                      |
| professionals with         | sessions lasting 15 minutes.                                                                                                                                                                                                                                                                                                                                             |
| knowledge about            | Include the discussion of UPF intake in                                                                                                                                                                                                                                                                                                                                  |
| UPFs                       | the syllabus of educational courses.                                                                                                                                                                                                                                                                                                                                     |

**Table 5:** Strategies to address ultra-processed food consumption in chronic kidney disease stages 3 to 5

Avesani CM, et al., 2025 accepted to Clin J Am Soc Nephrol Differentiate among UPFs with higher versus lower risk for driving to metabolic derangements UPF with higher risk: processed meats (luncheon meats), instant noodles, chips with artificial flavors, sweetened beverages (carbonated and non-carbonated sodas, fruits drinks not coming from 100% fruits juices, and sports drinks), packaged heat mixed dishes and ready-to-eat dishes and refined breads.

UPF with lower risk: Dark and whole grain breads, yoghurts not artificially flavored, spreads, non-dairy sweet and snacks.

Part of ready-to-eat dishes are not UPF as long as they are made from whole food and do not contain food additives.



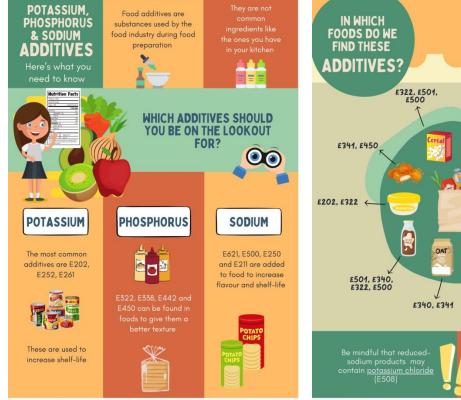



Figure 1. Percentage of total energy intake from food consumed according to the NOVA food classification system.

- 24-hour food recalls classified according to NOVA (n=78)
- Significant reduction in UPF intake after the medically tailored food basket



#### **Educational leaflets**



Developed by Valeria Cecchini, Alice Sabatino, Barbara Contzen. Carla Maria Avesani



Developed by Valeria Cecchini, Alice Sabatino, Barbara Contzen, Carla Maria Avesani



Developed by Valeria Cecchini, Alice Sabatino, Barbara Contzen, Carla Maria Avesani

#### Karolinska Institutet - a medical university

#### Conclusions

- Exact amount of additives in foods is unknown:
- Nutritional labels do not feature K and P content → unknown quantity in final products
- Mandatory labelling
- Future studies exploring which additives are detrimental to health, in which doses, and the role of UPFs' composition in these associations

